Nuclear Energy

Nuclear Energy University Programs (NEUP) Fiscal Year (FY) 2015 Annual Planning Webinar

Space and Defense Power Systems MS-RC-2: Radioisotope Power Systems RD&D

Scott Harlow

August 2014

Space and Defense Power Systems Program

■ Space and Defense Power Systems Program Goals

- Design, develop, build and deliver radioisotope power systems for space exploration and national security applications
- Support research, development and design of fission power systems for space exploration and national security needs

Benefits

- Enable customer missions in locations and environments where other power systems such as chemical batteries and solar power systems do not work
- Directly support NASA missions to explore the moon, Mars, outer planets and beyond

■ Key R&D Areas:

 Develop materials for use in the extreme environments require for space applications

Space and Defense Power Systems Program Overview

- Provides nuclear power sources for space science and exploration missions and national security applications for which solar energy or other power sources are not practical
- Maintains the capabilities to produce and deliver plutonium-238 fueled radioisotope power systems
- Reports to the Deputy Assistant Secretary for Nuclear Reactor Technologies within the Office of Nuclear Energy
- Works with NASA to provide radioisotope power systems for use in space
- Works for NASA to maintain ongoing capabilities and facilities at several national laboratories and awards private sector contracts for design, fabrication and delivery of specific power systems

Successful Missions

Nuclear Energy

Apollo (1969 - 1972)

Pioneer 10 (1972)

Voyager (1977)

Galileo (1989)

Ulysses (1990)

Cassini (1997)

New Horizons - Pluto (arriving around July 2015)

resolution at time of launch

Mars Science Laboratory – Landed August 6, 2012; mission likely to be extended

Space Nuclear Power System Projects

Multi-Mission Thermoelectric Generator (MMRTG)

- Fueled with ²³⁸PuO₂
- 110 W electricity
- Launched in 2011 on the Mars Science Laboratory rover Curiosity

Nuclear Thermal Propulsion

Nuclear fission reactor heats H₂ to produce thrust for inter-planetary travel

Key Components and Safety Features

■ Pu-238 fuel (generates decay heat)

- Alpha-emitter, 87-year half life
- High melting temperature (2,400°C / 4,352°F)
- Fractures into largely non-respirable chunks upon impact
- Highly insoluble in water

Cladding (encases the fuel)

- Fuel containment (normal operations or accidents)
- High melting point -- thermal protection (2,454°C / 4.450°F)
- Ductile -- impact protection

Graphite heat source (protects fuel & cladding)

- Impact shell -- impact protection
- Insulator -- protect clad during reentry
- Aeroshell -- prevent burnup during reentry
- Converter (converts heat to electricity)
- Radiator (rejects excess heat)

General Purpose Heat Source Module

General Purpose Heat Source

Multi-Mission Radioisotope Thermoelectric Generator

Grand Challenges

Nuclear Energy

■ Enhanced safety performance – contain nuclear materials under accident conditions

- Materials selection ceramic fuel, cladding, aeroshell, system structural components
- Product and component characteristics

■ Improved system performance

- Power output and efficiency power conversion, mass
- Reliability mission duration, operating environments
- Other design goals flexibility to meet variety of mission needs

■ Manufacturing processes

- Enhanced worker safety
- Fewer defects
- Reduced waste generation

Transformative Research Needs – Space Reactor & Fuels Development

■ Space Reactor and Fuels Development

 Effort toward developing a conceptual design for a reactor and fuel that covers a range of power outputs from 2-3 KWe to 40 KWe. Designs that could benefit both NASA and national security users are sought. Simplicity of design and manufacturability are important as well as minimizing total system mass.

■ RD&D Goals:

 Innovative design concepts that leverage existing fuel experience with focus on high reliability power conversion and reactor operations.

Workscope Description

Space Reactor and Fuels Development

- Proposals are sought for conceptual design for a reactor and fuel that covers the range of power outputs from 2 KWe to 40 KWe suitable for space nuclear applications.
- Keep the design simple to help avoid a costly development program while assuring ease of operation and reliability.

Transformative Research Needs – Americium-241 Heat Source Fundamental Studies

Am-241 Heat Source Studies

- As an alternative to Pu-238-powered radioisotope power systems, consider the effects of an RPS design that uses Am-241
- Focus of work should include the safety performance of the system with regard to its safety characteristics and environmental interactions

RD&D goals:

■ Investigate release and transport mechanisms of Am-241 in the environment to understand receptor pathways for dose assessments as part of nuclear risk assessments.

Work Scope:

Develop approaches and methodologies for nuclear risk assessment of RPS applications that use Am-241.